Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 24(6): 2622-2632, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29446515

RESUMO

Infectious disease and climate change are considered major threats to biodiversity and act as drivers behind the global amphibian decline. This is, to a large extent, based on short-term studies that are designed to detect the immediate and strongest biodiversity responses to a threatening process. What few long-term studies are available, although typically focused on single species, report outcomes that often diverge significantly from the short-term species responses. Here, we report the results of an 18-year survey of an amphibian community exposed to both climate warming and the emergence of lethal chytridiomycosis. Our study shows that the impacts of infectious disease are ongoing but restricted to two out of nine species that form the community, despite the fact all species can become infected with the fungus. Climate warming appears to be affecting four out of the nine species, but the response of three of these is an increase in abundance. Our study supports a decreasing role of infectious disease on the community, and an increasing and currently positive effect of climate warming. We caution that if the warming trends continue, the net positive effect will turn negative as amphibian breeding habitat becomes unavailable as water bodies dry, a pattern that already may be underway.


Assuntos
Anfíbios , Doenças dos Animais/epidemiologia , Biodiversidade , Mudança Climática , Micoses/epidemiologia , Doenças dos Animais/microbiologia , Animais , Quitridiomicetos/fisiologia , Micoses/microbiologia , Espanha
2.
Front Microbiol ; 8: 2494, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312201

RESUMO

Emerging infectious diseases caused by fungal taxa are increasing and are placing a substantial burden on economies and ecosystems worldwide. Of the emerging fungal diseases, chytridomycosis caused by the fungus Batrachochytrium dendrobatidis (hereafter Bd) is linked to global amphibian declines. Amphibians have innate immunity, as well as additional resistance through cutaneous microbial communities. Despite the targeting of bacteria as potential probiotics, the role of fungi in the protection against Bd infection in unknown. We used a four-part approach, including high-throughput sequencing of bacterial and fungal communities, cultivation of fungi, Bd challenge assays, and experimental additions of probiotic to Midwife Toads (Altyes obstetricans), to examine the overlapping roles of bacterial and fungal microbiota in pathogen defense in captive bred poison arrow frogs (Dendrobates sp.). Our results revealed that cutaneous fungal taxa differed from environmental microbiota across three species and a subspecies of Dendrobates spp. frogs. Cultivation of host-associated and environmental fungi realved numerous taxa with the ability to inhibit or facilitate the growth of Bd. The abundance of cutaneous fungi contributed more to Bd defense (~45% of the fungal community), than did bacteria (~10%) and frog species harbored distinct inhibitory communities that were distinct from the environment. Further, we demonstrated that a fungal probiotic therapy did not induce an endocrine-immune reaction, in contrast to bacterial probiotics that stressed amphibian hosts and suppressed antimicrobial peptide responses, limiting their long-term colonization potential. Our results suggest that probiotic strategies against amphibian fungal pathogens should, in addition to bacterial probiotics, focus on host-associated and environmental fungi such as Penicillium and members of the families Chaetomiaceae and Lasiosphaeriaceae.

3.
Proc Biol Sci ; 283(1835)2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27466456

RESUMO

Why does the severity of parasite infection differ dramatically across habitats? This question remains challenging to answer because multiple correlated pathways drive disease. Here, we examined habitat-disease links through direct effects on parasites and indirect effects on parasite predators (zooplankton), host diversity and key life stages of hosts. We used a case study of amphibian hosts and the chytrid fungus, Batrachochytrium dendrobatidis, in a set of permanent and ephemeral alpine ponds. A field experiment showed that ultraviolet radiation (UVR) killed the free-living infectious stage of the parasite. Yet, permanent ponds with more UVR exposure had higher infection prevalence. Two habitat-related indirect effects worked together to counteract parasite losses from UVR: (i) UVR reduced the density of parasite predators and (ii) permanent sites fostered multi-season host larvae that fuelled parasite production. Host diversity was unlinked to hydroperiod or UVR but counteracted parasite gains; sites with higher diversity of host species had lower prevalence of infection. Thus, while habitat structure explained considerable variation in infection prevalence through two indirect pathways, it could not account for everything. This study demonstrates the importance of creating mechanistic, food web-based links between multiple habitat dimensions and disease.


Assuntos
Anfíbios/microbiologia , Quitridiomicetos/fisiologia , Ecossistema , Zooplâncton , Animais , Raios Ultravioleta
4.
PLoS One ; 10(3): e0120237, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793985

RESUMO

Amphibians are one of the groups of wildlife most seriously threatened by emerging infectious disease. In particular, chytridiomycosis, caused by the aquatic fungus Batrachochytrium dendrobatidis, is responsible for amphibian species declines on a worldwide scale. Population-level outcomes following the introduction of the pathogen are context dependent and mediated by a large suite of abiotic and biotic variables. In particular, studies have shown that temperature has a key role in determining infection dynamics owing to the ectothermic nature of the amphibian host and temperature-dependency of pathogen growth rates. To assess the temperature-dependent seasonality of infectious burdens in a susceptible host species, we monitored lowland populations of larval midwife toads, Alytes obstetricians, in Central Spain throughout the year. We found that infections were highly seasonal, and inversely correlated against water temperature, with the highest burdens of infection seen during the colder months. Short-term impacts of water-temperature were found, with the minimum temperatures occurring before sampling being more highly predictive of infectious burdens than were longer-term spans of temperature. Our results will be useful for selecting the optimal time for disease surveys and, more broadly, for determining the key periods to undertake disease mitigation.


Assuntos
Anuros/microbiologia , Quitridiomicetos/fisiologia , Micoses/microbiologia , Temperatura , Água , Animais , Larva/microbiologia , Micoses/epidemiologia , Prevalência , Fatores de Tempo
5.
Ecohealth ; 10(1): 82-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23494771

RESUMO

Batrachochytrium dendrobatidis is an unpredictable pathogen for European amphibian species, and existing field surveillance studies likely underestimate the scope of its distribution and effects. Mass mortality episodes recorded in Europe indicate that investigations of unstudied species should focus on members of the frog family Alytidae. Here, we report the combined results of a field survey and laboratory observations of field collected Alytes dickhilleni. Our data support the hypothesis that B. dendrobatidis has recently emerged in at least two disjunct locations in the species range and populations across much of the species range lack evidence of infection pathogen. Tadpoles taken into the laboratory from sites with infection experienced 70% mortality, unlike those taken into the laboratory from uninfected sites, and both infection and strength of infection was associated with mortality in animals collected from infected locations. Several conservation interventions are underway in response to our study, including the establishment of a captive assurance colony, a public awareness campaign, and experimental tests of disease mitigation schemes.


Assuntos
Anuros/microbiologia , Biodiversidade , Quitridiomicetos/isolamento & purificação , Larva/microbiologia , Micoses/mortalidade , Animais , Quitridiomicetos/patogenicidade , Extinção Biológica , Micoses/microbiologia , Micoses/veterinária , Dinâmica Populacional , Prevalência , Espanha/epidemiologia
6.
Conserv Biol ; 25(5): 975-82, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21676032

RESUMO

Chytridiomycosis, the emerging disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd) is responsible for declines and extirpations of amphibian populations worldwide. Environmental covariates modify the host-Bd interaction and thus affect the ongoing spread of the pathogen. One such covariate may be the intensity of ultraviolet B (UV-B) radiation. In a field experiment conducted in Laguna Grande de Peñalara (central Spain), a mountainous region where the presence of Bd has been documented since 1997, we analyzed the potential effect of environmental UV-B (daily maximum 2.5-3.9 W/m(2) ) on the susceptibility of larvae of the common toad (Bufo bufo) to Bd. The proportion of infected individuals increased as tadpoles developed. The prevalence of Bd was significantly lower in tadpoles exposed to environmental UV-B intensities (2.94%) than in tadpoles not exposed to the radiation (9.72%). This finding mirrors that seen for a second amphibian species, the European midwife toad (Alytes obstetricans), for which conditional prevalence (i.e., prevalence of infection conditioned on the probability of a site being infected) across the Iberian Peninsula was inversely correlated with the intensity of UV-B.


Assuntos
Bufonidae/microbiologia , Quitridiomicetos/patogenicidade , Dermatomicoses/veterinária , Raios Ultravioleta , Animais , Dermatomicoses/epidemiologia , Dermatomicoses/etiologia , Suscetibilidade a Doenças/microbiologia , Larva/microbiologia , Larva/efeitos da radiação , Modelos Lineares , Espanha/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...